
IL

14

l Department of
~Computer Science and

Electrical Engineering

DTIC

S ELECTE
I

II

University of Nevada, Las Vegas

Las Vegas, Nevada 89154

omputer Sciencean

ElectricJaO Eng i n i

TI
- "... l H IIl Ii ill i B .S. ELECT

On Purely Exponential Logic Queries

by

Kasem Taghva*
Department of Computer Science

University of Nevada
Las Vegas, NV 89154

and

Tian-Zheng Wu
Department of Computer Science

New Mexico Tech
Socorro, NM 87801

may 1988 DTIC

SELECTSOCTI 91988 U

• The research of this author was supported in part by U.S. Army Research Office under grant

#DAAL03-87-G-0004. -DIMT OffITATEfE24 A

AppmrW Sw piabbe - 1
DuIMnm UzHniMit I

Ir.

UNCLASSIFIED MASTER COPY - FOR REPRODUCTION PURPOSES
SECURITY CLASSIFICATION OF TIS PAGE

REPORT DOCUMENTATION PAGE t 9 f
I&. REPORT SECURITY CLASSIFICATION lb. RESTRICTIVE MARKINGS '

2a. SECURITY CLASSIFICATION AUTHORITY 3. DISTRIBUTION I AVAILABIUTY OF REPORT

2b. 0ECLASSIFION I DOWNGRADING SC.HEDULE Approved for public release;

distribution unlimited.

4. PERFORMING ORGANIZATION REPORT NUMBER(S) S. MONITORING ORGANIZATION REPORT NUMBER(S)

ARO 24960.19-MA

6a. NAME OF PERFORMING ORGANIZATION 6b. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION

Univ. of Nevada, Las Vegas (I apkableU
________________________I ___________ U. S. Army Research Office

6c. ADDRESS (Cty, State. mod ZIP Code) 7b. ADDRESS (CRY, State, and ZIP Code)

Dept. of Computer Science & Elec. Engr. P. 0. Box 12211
4505 Maryland Parkway Research Triangle Park, NC 27709-2211

L e~s.NV 89154

$a. NAME OF FUNDING/ SPONSORING 6b. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER

-NAO DAAL03-87-G-0004U. S. Army Research Office

Sc. ADDRESS (Cty, State. and ZIP Code) 10. SOURCE OF FUNDING NUMBERS

P. 0. Box 12211 PROGRAM PROJECT TASK WORK UNIT:i P .Bx121ELEMENT NO. NO. INO. DACCESSION NO.

Research Triangle Park, NC 27709-2211 E

11. TITLE (Include S curity Classfcation)

On Purely Exponential Logic Queries

2. PERSONAL AUTHOR(S)
i

Kazem Taahva and Tian-Zheng Wu

13a. TYPE OF REPORT 13b. TIME COVERED 114. DATE OF REPORT (Yee,, Month, Day) S. PAGE COUNT

Technical I FROM TO I May 1988 r 16

16. SUPPLEMENTARY NOTATION The view, opinions and/or findings contained in this report are those

S of he auth r($).and sh uld not be construd as. an fficial Deartment of the Army position,

17. - COSATI CODES II. SUJBJECT TERMS (Continue on reverse if necesary and identify by block numbe

FIELD GROUP SUB-GROUP Logic Progamming, Relational Data Model, Dependency,

Recursive Queries.

19. ABSTRACT (Continue on rever if neessary and iden1* by block number)

Purely exponential queries are logic programs of the form:
SWX 4- S('Xl), S(X2), ..., S(-Xn).

S(X) <- A(X).

where S and A are predicates of arity m. In this paper, we provide a syntatic

condition under which these queries can be rewritten as linear queries. As an

application of this result, we give a new proof for Guessarian's theorem 14]

on converting binary chained exponential queries to linear queries. Moreover,

an infinite chain of progressively weaker template dependencies is constructed

via expansion of the logic program for transitive closure of a relation R. This

natural chain yields another proof for the result of R. Fagin, et al [3].

20. DISTRIBUTION IAVAILASUTY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION

OUNCLASIFIEDIUNLIMITED Q SAME AS RPT. COTIC USERS Unclassified

228. NAME OF RESPONSIBLE INDIVIDUAL 22b. TELEPHONE clud COde) 22C. OFICE SYMBOL

DO FORM 1473, s 4 mm3 APR edition may be used until exhausted. SECURITY CLASSIFICATION OF THIS PAGE
AN othe editis are obslete. UNCLASSIFIED

Abstract

Purely exponential r ueries are logic programs of the form:

Slt) -- Soto, S(12), ..,SAO-)
= i s(Jt) - A(1).

where S and A are predicates of arity m. In this paper, we providd a syntactic conditi4 under

which these queries can be rewritten as linear queries. As an application of this result, w give a

new proof for Guessarian's theorem Ion converting binary chained exponential queries to linear

queries. Moreover, an infinite chain of progressively weaker template dependencies is constructed

via expansion of the logic program for transitive closure of a relation R. This natural chain yields

another proof for the result of R, Fagin et K"1)> ,A W' , (k

Acoesslon lo

NTIS R&
DTIC TAB Q
Unannouneed 0
.Justifioat ion

By
Distribuztion/

Availability Codes

.fvail -Id/or
I~ist Special

I. Introdution

The recursive nature of logic programs has long been the subject of optimisatioa techniques

[2](7). Recently, the database community hat taken interest in extending the expressive power of

relational algebra by augmenting it with function-bee Horn style logic queries. This extension

has led to various optimisation techniques[2(7]. It seems, almost invariably, these techniques are

most efficient in the processing of linear recursive queries. For this reason, there is a genuine

interest in identifying those classes of non-linear recursive queries which can be rewritten as linear

queries. Among these classes are binary chained purely exponential queries[4] and doubly recursive

queries[9].

In this paper, we provide a sufficient condition for a subclass of purely exponential queries

to be equivalent to linear queries. This subclass properly contains the class of binary chained

purely exponential queries. In addition, as a by product of this work we construct a very natural

progressively weaker infinite chain of template dependencies[3].

S. Preliminaries

A literal is an expression of the form P(X 1 , X2 ,. . ., X), where P is a predicate symbol of

arity m and Xj's are either variables or constants. A rule is a formula of the form

P(X ... 2, X) :- QdY.. Y1 ,,,. .. ,

Q0(Y1, 1 , Y3, 2, . 2. ,.) ., . (Yt,, Y.,s, Y,,,),

where P(XI,X2,...,X,,) and Q,(Y,1,Yi,2,....Y,,%) for i = 1,2,...,n are literals. A rule

is recursive if P - Q, for some i. A recursive rule is linear if there is exactly one occur-

rence of P on the right-hand side. We will call P(Xi,X 2 ,... , X,,) the head of the rule and

Q1 (Y,x, Y, 2 ,. .. , Y,.),Q (Y 2., Y, 2 Y,,,,), ... , Q,(Y-.,, Y,2 ... , Y,,m) the body of the rule.

The variables appearing in the head of the rule are called distinguished variables, and all other

variables are called nondistinguished. We will also make the assumption that all predicates except

P are denoting base relations (i.e., relations explicitly stored in the database).

Intuitively, a rule states that the tuple (X1 ,X 2,...,X,,) is in P, if tuples

(Y,1, Y1,2 ... IY, ,.), (Y2,t,, Y ,.,3 Ym), ... , and (Y,., 1, Y,, 2,..., Y,) are in Q1, Q2,... and Q.

2

respectively. A logic program is a finite sequence of rules to be interpreted as a finite diqjunct of

rules.

3xample 2.1 Let R denote a binary base relation, then the following program represents

the transitive closure of R:

{ T(X, Y) T(X, Z), T(Z, Y).
(I)

T(X, Y) :-R(X, Y).

Rule is states that every tuple in R is also in T, while rule r states that all other tuples in T

should be obtained by the composition of tuples in T.

Although logic programs in general are evaluated via resolution methods, logic queries in

database settinr are evaluated by fixed point techniques due to the restricted form of these

queries. We will demonstrate this technique using the program given in example 2.1. Assume

that the base relation representing R is ((a, b), (b, d), (c, f).

Step 1: T= *, R = {(a, b), (b, c), (c, f)).

Step 2: Place the current values of T and R from step I into the bodies of rules 1 and e2 .

As the current value of T is O, rule r, will not produce any tuple, while rule r3 will add the current

value of R to T, i.e.,

T = (a, b), (b, c), (c, 1)},

R = ((a, b), (b, c), (c,)}.

Step 3: Place the current values of T and R from step 2 into the bodies of rules r, and r3.

Rule r3 will not add any new tuples to T. Rule r, will add tuples (a, c) and (b, f) to T, as these

two tuples are the result of taking join over the attribute Z and then projecting over the attributes

X and Y. Hence,

T = ((a, b), (b, c), (c, f), (a, c), (b, 1),

R ={(a, b), (b, c), (c, f)).

Step 4: Place the current values of T and R from step 3 into the bodies of rules r, and r2.

Again rule P, will not add any new tuples to T, while rule P3 will add the tuple (a, f) to T. Hence,

3

T =(a, b), (b, c), (c, f), (a, c), (b, f), (a, I)),

A ={(a, b), (b, c), (c. I)). .

Step 5: Place the current values of T and R from tep 4 into the bodies of rules P, and r,.

At this time, neither rule produces any new tuples. The procedure terminates and the transitive

closure of R is taken to be the last value of T from step 4.

The above procedure will always terminate due to the existence of the least fixed point(l].

The purely eponential programs are defined to be programs of the formf4j:

S(xI, X' ... ,x.) :-S(Y,,,, YI',2,... , YI,.),..., s Y. 2,1..., V.,.).

S(XI,X 2,...,X,.) A(XI,X3,... ,X,).

The class of purely exponential programs contains a large number of natural examples such

a transitive closure and Cartesian products. Moreover, the recursive rules in purely exponen-

tial programs are essentially template dependencies as defined in (3)[8]. We say that a purely

exponential progrn is binary chained if it has the following form:

S(XY) :- s(XZ,), S(z,Z 2), ...,(z_,Y).

S(X,Y) :- A(X,Y).

Two programs PI and P2 defining predicates S and S2 using the same set of base relations are

equivalent if both P and P2 produce the same relation for SI and S2 for all values of the base

relations. For example, the program given in example 2.1 is equivalent to the following program:

{p: T(X,Y) :- Z(Xz), T(Z,Y).

r T(X,Y) :- R(X,Y).

One approach in establishing equivalence is to expand the recursive predicates SI and SI into

disjunct of conjunctions of base predicates. Since programs such as transitive closure are not first

order properties [I], in general the disjunct is infinite. The following infinite sequence deflnes the

transitive closure of a relation R (commas are to be interpreted as and):

4

R(X, Y)

R(X, Zo), r(Zo, Y)

R(X, Zo), R(Zo, Z1), R(Z1, Y)

R(X, Ze), R(Zo, Z1), R(Z,, Z2), R(Z2, Y)

The first expression is obtained from rule P2 of program (II), the second expression is obtained

from rule r* of program (II) with the nondistinguished variable Z being renamed Zo and T(Z, Y)

rewritten as R(Z, Y), the third expression is obtained from rule , by rewriting T(Zo, Y) as

R(Zo, Z1), T(Z 1 , Y) using rule r, recursively and then rewriting T(Zt, Y) as R(Z, Y) using rule

P2, and so on. It is important that we rename the nondistinguished variables as we expand. Intu-

itively, the first expression represents the base relation R, the second represents all tuples obtained

from R via one application of transitivity, the third represents all tuples obtained from R via two

applications of transitivity, and so on. Then the transitive closure is defined to be the union of

all relations defined by these expressions. If there is more than one occurrence of the recursive

predicate, we must systematically expand all occurrences of the predicate by means of a selector

function[6]. In the terminology of first order logic the above infinite sequence can be written as:

{XY I R(X,Y)}

{XY I (3Zo) (R(X,Zo)AR(Zo,Y))}

{XY I (3Zo)(3Z,) (R(XZo)AR(Zo,Z,) A R(Z,,Y))}

{XY I (3Zo)(3Z,)(3Z2) (R(X, Zo) A R(Zo, Z1) A R(Z1, Z2) A R(Z,, Y))}

Finally, we call a mapping p between variables of expressions el and el a containment map,

if p maps each distinguished variable to itself and for every literal P(X,X2,...,X,,,) of el,

S

then P(p(Xi),p(X,),... ,p(X.)) is a literal of e3. The next lemma states the relationship

between a containment map and relations defined by expressions el and c.

Lemma 2.1 If p is a containment map from el to e:, then the relation defined by e2 is a

subset of the relation defined by el.

3. Meain Result

In this section, we will establish a sufficient condition to rewrite purely exponential queries of

the form (*) into the following linear queries:

s(x, ,,. .. , x,) : - A(Yr,,r,, *, Y,,),.., A(Y(3 _,),,,._,),,,...*, .,)

S(Xi,X,..,X,,) :

In order to motivate the readers, we first provide an example of a purely exponential query of

the form (*) which is not equivalent to a linear query of the form (").

Example 3.1 Consider the following two programs:

(S(Xt,X2,Xs) - S(W,X3,U), S(X,,U,V), S(T,V, Xs).

$(X,, X:, Xs) :-A(XI,,X2, X's).

S(X,, X2, Xs) :- A(, X,, U), A(X,, U, V) , S(T, V, Xs).P1
S(Xz, X2, X3) : - A(X,, X1, Xs).

Let A = ((6,0,1),(7,1,2),(6,2,3),(8,3,4),(7,4,5)}. In order to see that P and P2 are not

equivalent, we can expand both programs. We observe that the following expression

A(W,, X,, Ui)A(W, U, V,)A(T, V, (7)A(X,, U, V)A(T, V, Xs)

can be obtained by first applying the recursive rule of P at the leftmost occurrence of S and then

replacing all occurrences of S by A. Now, by assigning (6, 0, 1), (7,1, 2), (6, 2, 3), (8, 3, 4) and

6

(7,4,5) to A(Wi,X3,UI), A(W,U 1 ,VI), A(T,V1,U), A(X1,U,V) and A(T,V, Xs) respectively,

we generate the new tuple (8, 0, 5) via program P1 . It is easy to see that the following is the

infinite expansion of PI:

el =A(W, X3, U), A(Xi, U, V), A(T, V, Xs),

e2 =A(W, X3, U), A(X 1 , U, V), A(W 1 , V, U1), A(T, U1 , V), A(T, V1', X&),

es =A(W, X3, U), A(X1, i, V), A(Wi, V, UI), A(T, U1, V),

A(W 2 , V1, U2), A(T, U3, Va), A(T3, V2, Xs),

We note that the first two literals of el is a prefix of e2 and the first four literals of e 2 is a prefix

of es, and so on. We observe that el and e 2 do not produce the tuple (8, 0, 5). Because of

the way the variables are chained in e for k > 3, the first five literals should be assigned to

(6,0, 1), (7,1,2), (0,2,3), (8,3,4) and (7,4,5) respectively. It can be seen that the tuple (8,0, 5)

will never be generated.

In the database setting, in addition to the fact that function symbols are not allowed, there is

another restriction which is known as the safety rue[21. The safety requires that any distinguished

variable should also occur somewhere in the body of the rule. Both function symbols and unsafe

formulas cause nonterminating computations[21.

Definition 3.1 Let P(X 1 ,X2,X, and Q(YI,Y 2 ,...,Y,,,) be two literals, a connection

graph fr.-m P to Q is a directed graph on m nodes for which there is an edge from node i to node

j if" zi = yj . A purely exponential query is unifornly connected iff every two adjacent literals in

the body of the rule have the same connection graph.

Example 3.2 Consider the following program:

S(X 1 , X3, X 3) - SU, X 2, Xs), S(V, Ur, U), S(X, V, V).

S(X 1 , X 2, X3) - a(X, X, X3).

7

The connection graph from S(U, X 2 , Xs) to S(V, U, U) is shown in Fig. 1.

Fig. 1. The connection graph from S(U, X.., Xa) to S(V, U, U)

Furthermore, we observe that the connection graph from S(V, U, U) to S(X 1 , V, V) is also the

same graph in Fig. 1. Therefore, this program is uniformly connected.

Definition 3.2 Let P be the class of purely exponential programs P satisfying the following

conditions:

(1) P is uniformly connected with no isolated node(i.e., for no node i,

indegree(i)=outdegree(i)=O);

(2) Only adjacent literals in P have common nondistinguished variables;

(3) Every distinguished variable Xj occurring at position i of the head,

can only occur at position i of all literals(i.e., typed distinguished vari-

ables).

We will prove that every program in P can be written in the form (**). It should be noted

that P is a huge subclass of purely exponential queries, in particular it contains all binary chained

purely exponential queries as defined in [4).

The next lemma is instrumental in proving our main theorem.

Lemma 3.1 Every program P in P has the following properties:

(1) For no node i in the connection graph of P, both indegree(i) and

outdegree(i) are nonsero unless i is a stationary node(i.e., there is an

edge from i to il).

s We point out that due to the safety rule, stationary nodes are labeled by distinguished

variables.

. .. -. -- .--- ,a = .. , ..--. i ,m ,=, s

(2) Ifindegree(i)$ 0, then the variable at position i of the leftmost literal

of P's body must be distinguished. Similarly, if outdegree(i)$ 0, then

the variable at position i of the rightmost literal of P's body nmust be

distinguished.

Proofs (1) Let i be a nonstationary node with nonsero indegree and outdegree, then by part(3)

of definition 3.2, every literal of P's body must have a nondistinguished variable at position i. This

implies that the distinguished variable at position i of P's head will not occur in P's body which is

a violation of the safety rule.

(2) Suppose indegree(i)# 0. If node i is stationary, then we are done as stationary nodes

are labeled by distinguished variables. Therefore, suppose node i is not stationary, in which case

again by part (3) of definition 3.2, every literal of P's body must have a nondistinguished variable

at position i. This again violates the safety rule. A similar argument proves the case for which

outdegree(i)$ 0. U

The next lemma states that if we expand a program P of P , then every expression in the

expansion of P enjoys the properties stated in lemma 3.1.

Lemmma 3.2 Let e be an expression in the expansion of P E P , then e is uniformly connected

and has the same connection graph as P. Moreover, both properties (1) and (2) of lemma 3.1 hold

for e.

Proof: By induction on k, where k is the number of applications of recursive rule of P.

Basia k = 0. Obvious from lemma 3.1.

Inductive Step: Observe that for every application of the recursive rule, we increase the number

of the literals by (n - 1). Suppose that ek is obtained by k applications of the recursive rule:

ek = $(Z1,1, Z1,2., Z1,.)' ... ,(Z(P-11'1, Z(P-t),3,, Z(P-t),,n), S(zPI, 42s,, ,)

S(Z~p~t),I, Z(p I),2, • • •, Z(p~t},.) , S(Z.+4(n- if, l Zn &(.-1t),s, ..•., tZn (,n-1),m)

Now, if we expand on pth occurrence of S, we have

9

-i

elb+t =S(Zijzi,2I ZI,,,), ...,I S(Z(I,_I).I, Zlr-I).2t Zl _I),,,),

s(W,,,, 14,,,, ,,), s(w,,I ,2, ..., w3..), ,s(w.,,, w.'39,..., IW.,.),
S (Z (V + I), ,, Z (P + x , , ,9 Z (? + , ,. I)-. S (Z .+ k(. _,), : , Iz f + h ._I),.3 Z % + h(% _,) ,.)

Obviously, it suffices to show that the connection graphs from S(Z,_x),, Z(_,),2 , Z(vM)

to S(W,,, W,,..., W,,) and from S(W,,, Wi,,,.. ., Wi,,) to S(Z(,+l), ,z(.+ ,, ... , Z(+ ,,)

are the same as P's connection graph. Let a be an edge from node i to node j in the connection

graph of P, then by definition of the connected graph and our inductive

hypothesis Z,_,),i = Zj. Now, when we replaced the literal S(4,rZ,, 2,,) by

S(Wx,,, W,., , Wt,..), S(W ,j, W2,... -, W2,".) S(W.,I, W,,,..., W.,,.) in the (k + 1)th ap-

plication of the recursive rule, the variables Z,, Z,,2, ..., Z.,", are distinguished. Since indegreej)

0, by part (2) of lemma 3.1, WIj must be distinguished, i.e., Zp,j = W 1j. This implies that

Z(p-,-j) = W 1j, and therefore there is an edge from node i to node j in the connection graph from

S(Z(P,.),,Z(P,.)'2,...,, , to S(W,,, ,,,..., W1,,). Furthermore, the stationary nodes

will remain stationary. Finally, as we rename the nondistinguished variables in any application of

the recursive rule, we will not create any edge which already does not exist in the connection graph

of P.

In order to show that the connection graph from S(W, 1 ,Wi, 2 ,W,,,,) to

S(Z(,+t),l, Z(,+t),2,.. .Z(p+1),,,) is the same as P's connection graph, again let a be an edge

from node i to node j. We will show that W.,, = Z(p+I)j. Since the assertion holds for ek by

inductive hypothesis, the definition of connection graph implies that Z,I = Z(,+1)J. Also, as in

the above case, since Z,,,,Zp,;,..., 2, are distinguished variables for the (k + 1)th application

and outdegree(i)$ 0, by part (2) of lemma 3.1, Wj,, is distinguished, i.e., W,,.j = Zg,d. This implies

that Zp, = W,,j = Z(p+,),.. Hence, there is an edge from node i to node j in the connection graph

from S(W,,,,W,,,I,.. ., W,,.) to S(Z(,+l),l, Z(p+t),2, Z(p+),,m). 0"C

Theorem 3.1 Let P E P , then P is equivalent to a program of the form (*).

Proof: Let P' be the corresponding program of the form ("), we will show that P is equivalent

to P'. Let E and E' be the expansions of P and P', respectively. Let • E E and suppose e is

obtained by k applications of the recursive rule in P, then e has the form:

, 1•

• = S Zj,Z, 21 ... Zm),. ... S(Z.+s(.-.,1,sl)i *,

Let e' be the expression obtained from k applications of the recursive rule in P' (observe that we

can only expand on the rightmost literal), then e' has the form:

= S(W 1, 1, W,,,.. ., W,,.),.. ., S(WV&+,(f._,)', WX+,(._,.), ... , W.+k(._,),.)

Let p :e -# e' defined by p(Z,) = W for j= 1,2,..., m and i = 1, 2,..., n + k(n -1).

We will show that p is a containment map.

By lemma 3.2, both e and e' have the same connection graph. We first prove that P is

well-defined. Suppose ZIj = Zi,j,, then we need to show that Wj, = Wi.j.. In case Z4,j is

distinguished, then by part (3) of definition 3.2, j = j'. Now, by past (1) of defintion 3.2, node

j must be stationary. Hence, Z4j = ZidJ = Wj = Wer = X, for some distinguished variable

X. If Zij is nondistinguished, then by part (2) of definition 3.2, Zsj and Z,J, must either occur

in two adjacent literals or the same literal. In case they occur in adjacent literals, by definition of

the connection graph, there must be an edge from node j to node j'. Since both e and e' have the

same connection graph, then Wij = W1 ,,,. Finally, if they both occur in the same literal, again

by the fact that e and e' have the same connection graph it follows that Wij = Wid.

In order to show that p is a containment map, we observe that S(p(Z1,.), p(Zp,,), ... p(Z,,,)) =

S(W,,t, W,,,.. ... Wp,,). All that remains to be shown is that p maps distinguished variables

to distinguished variables. Let Z~j = X be a distinguished variable. If node j is stationary,

then X occurs at position j of all literals in both e and e'. Hence, p(Zij) = Wij = X. If

indegree(j)# 0, then by lemma 3.2, ZI, = X = W1,j = p(Z1 j). If outdegree(j)$ 0, then by lemma

3.2, Z&+s1(%-1)J = X = W,+&(,-t)j = P(Z%+k(,,),). This shows that every expression in E can

be mapped to an expression in E'. The converse is trivial. 0

I. Guessarian [4] has shown that binary chained purely exponential queries can be written as

linear queries by using a very elaborate fixed point technique. This result follows immediately from

theorem 3.1.

II

Corollary 8.1 Binary chained purely exponential queries can be written am linear queries.

4. Progressively Weaker Chain of Template Dependencies

A full template dependency(TD) is a formal statement r of the form:

' 1 Yi,2 .. V-e1iY Y ujtY.,2 ... Yyn,,VXIVX2... VX. (

R(Y.i,Y, 2 ,..., Y,,.) A R(Y 2 1, Y2,2 ,.. . , Y2,,.) A A A R(Y.,I, Y,, 2 , Y,,M)

--,R(Xt, Xz,..., X.)),

wherefori=l ... ,m,X=Yj,aforsome l<j_<nand I <k<m.

In [3], an infinitely weaker and stronger sequence mro, rj, r, ... of template dependencies is

constructed via the TD graph. These sequences have been used to establish various results regarding

TDs. We will show here that the expansion of program (I) for transitive closure of a relation R

will provide a natural example of an infinitely weaker chain. We will use the notation, r e, to

state that TD a is a logical consequence of r.

Theorem 4.1 There exists an infinite sequence of full TDs r0, r?, r2, ", ... such that

ri I rj+1 for each i, i = 1, 2,3,... and no two ris are equivalent.

Proof: For simplicity, we will drop the quantifiers from the TDs' notation. Let

lbt 0i, , r , ... be the following expressions in the expansion of the transitive closure of R.

12

,b R(X, U) A R(U, Y) - R(X, Y).

•, . (X, Uj)^A (U , u3)^A (U2, Y)^R(Xs, Y4)^ rY -.~,)

2 . R(X, U1) A R(Ut, U,) A R(U , Us) A R(Us, U4) A R(U4 , Y) ^ R(X, Y).

To R(X,U1)AR(U1 1 U,)A R(U,,Us) AR(U,,U4) AR(U4,Us) AR(Us,U.)

A R(Uo, U?) A R(UT, US) A R(Us, Y) - R(X, Y).

R R(X, U1) A R(U, U3) A... A R(U,,_- 1, U,2) A R(U2,, Y) - R(X, Y).

r4+1 R (X, j)^AR(Ut,,U2)^A...^A (Ul, i- ,_,,ji,.)^AR(U3+, ,Y) -. (X,Y).

We first show that r" v= ' (the general case is the obvious generalisation of this). Let v satisfy

rtl, and suppose that (a, 1), a(l, a2), G (4,s), (a, ,4), (*4, b) ate tuples of v mapped to the hypothesis

tows of T3, respectively. We want to show that (a, b) is also a member of r. Since 71 holds in P,

if we map (6, 61), (al, 62),(a2, as) to (X, U)(Uj, U2)(U2, Y) respectively, then we must have tuple

(a, G) in r. Now, map (a, as),(as, a4),(a4,b) to the hypothesis of 1 , again since r, holds in r, we

must have (a, b) in P.

To show that ri K +, let

v~ = IVAU), (UsUs), -.1. (U2, ,-1, U2,+.), (U2,+,,Y), (X,Y)l

i.e., a relation consisting of all n+t's rows. If we map (X, Uj), (U1 , U2), ... , (Uf, Uji++) to the

hypothesis tows of i', then for P to satisfy ri, tuple (X, U,+ 1) must be in r, which is not according

to our construction of P. 0

5. Conclion

3

We have identified a suffcient condition to rewrite purely exponential queries as linear queries.

Consequently, as a corollay, we have obtained a new proof for the result of Gueuarian [4]. In

addition, a natural ininite chain of progressively weaker TDI is constructed via expansion of the

logic program for transitive closure of a relation R. We hope the techniques developed in this paper

motivate further research in this area.

14

..*i i l " i i l - I • I -

Reference

[11 Aho,A.V., and Ullmaa,J.D., Ullman, Universality of Data Retrieval Languages, ACM Stmp.

on Principles of Pro#. Lang., 1979, 110-120.

12] Banchilon,F., and Ramakrishaan, R., An Amateur's Introduction to Recursive Query Processing

Strategies, Proc. ACM SIGMOD Conf., 1986, 16-52.

[3 Fagi*,R., MierD., Uliman,J.D., and Yannakakis,M., Tools for Template Dependencies, SIAM

J. on Computing 12:1, 1983, 36-59.

[4] Guessarian,., Fixpoint Techniques in Data Base Recursive Logic Programs, Bull. EATCS, £9,

1986, 32-35.

[5] Jagadish,H.V., Agrawal,R., and Ness,L., A Study of Transitive Closure As a Recursion Mecha-

nism, Proc. ACM SIGMOD Conl., 1987, 331-344.

(61 Naughton,J., Data Independent Recursion in Deductive Databases, ACM SIGMOD.SIGACT

Symnp. on Principles of Datoabae Systems, 1986, 267-279.

[7] Sagiv,Y., Optimising Datalog Program, ACM SIGMOD-SIGACT Symp. on Principles of

Database S1stems, 1987, 349-362.

[8] Tmghva,K., Some Characterizations of Finitely Specifiable Implicational Dependency Families,

Information Processing Letters 23, 1986, 153-158.

[9] Zhang,W., and Yu,C.T., A Necessary Condition for a Doubly Recursive Rule to Be Equivalent

to A Linear Recursive Rule, Proc. ACM SIGMOD Conf., 1987, 345-356.

151

